Статическое и динамическое озу. Статическая и динамическая оперативная память. Оперативные запоминающие устройства. Физическая структура основной памяти

Статическое и динамическое озу. Статическая и динамическая оперативная память. Оперативные запоминающие устройства. Физическая структура основной памяти

Динамической памяти в вычислительной машине значительно больше, чем стати­ческой, поскольку именно DRAM используется в качестве основной памяти ВМ. Как и SRAM, динамическая память состоит из ядра (массива ЗЭ) и интерфейсной логики (буферных регистров, усилителей чтения данных, схемы регенерации и др.). Хотя количество видов DRAM уже превысило два десятка, ядро у них организова­но практически одинаково. Главные различия связаны с интерфейсной логикой, причем различия эти обусловлены также и областью применения микросхем – помимо основной памяти ВМ, ИМС динамической памяти входят, например, в состав видеоадаптеров. Классификация микросхем динамической памяти пока­зана на рис. 72.

Чтобы оценить различия между видами DRAM, предварительно остановимся на алгоритме работы с динамической памятью. Для этого воспользуемся рис. 68.

В отличие от SRAM адрес ячейки DRAM передается в микросхему за два шага - вначале адрес столбца, а затем строки, что позволяет сократить количество выво­дов шины адреса примерно вдвое, уменьшить размеры корпуса и разместить на материнской плате большее количество микросхем. Это, разумеется, приводит к снижению быстродействия, так как для передачи адреса нужно вдвое больше вре­мени. Для указания, какая именно часть адреса передается в определенный момент, служат два вспомогательных сигнала RAS и CAS. При обращении к ячейке памя­ти на шину адреса выставляется адрес строки. После стабилизации процессов на шине подается сигнал RAS и адрес записывается во внутренний регистр микро­схемы памяти. Затем на шину адреса выставляется адрес столбца и выдается сиг­нал CAS. В зависимости от состояния линии WE производится чтение данных из ячейки или их запись в ячейку (перед записью данные должны быть помещены на шину данных). Интервал между установкой адреса и выдачей сигнала RAS (или CAS) оговаривается техническими характеристиками микросхемы, но обычно ад­рес выставляется в одном такте системной шины, а управляющий сигнал - в сле­дующем. Таким образом, для чтения или записи одной ячейки динамического ОЗУ требуется пять тактов, в которых происходит соответственно: выдача адреса строки, выдача сигнала RAS, выдача адреса столбца, выдача сигнала CAS, выполнение операции чтения/записи (в статической памяти процедура занимает лишь от двух до трех тактов).

Рис. 72. Классификация динамических ОЗУ: а) – микросхемы для основной памяти; б) – микросхемы для видеоадаптеров.

Следует также помнить о необходимости регенерации данных. Но наряду с ес­тественным разрядом конденсатора ЗЭ со временем к потере заряда приводит так­же считывание данных из DRAM, поэтому после каждой операции чтения данные должны быть восстановлены. Это достигается за счет повторной записи тех же данных сразу после чтения. При считывании информации из одной ячейки факти­чески выдаются данные сразу всей выбранной строки, но используются только те, которые находятся в интересующем столбце, а все остальные игнорируются. Та­ким образом, операция чтения из одной ячейки приводит к разрушению данных всей строки, и их нужно восстанавливать. Регенерация данных после чтения выполняется автоматически интерфейсной логикой микросхемы, и происходит это сразу же после считывания строки.

Теперь рассмотрим различные типы микросхем динамической памяти, начнем с системных DRAM, то есть микросхем, предназначенных для использования в ка­честве основной памяти. На начальном этапе это были микросхемы асинхронной памяти, работа которых не привязана жестко к тактовым импульсам системной шины.

Асинхронные динамические ОЗУ. Микросхемы асинхронных динамических ОЗУ управляются сигналами RAS и CAS, и их работа в принципе не связана непосред­ственно тактовыми импульсами шины. Асинхронной памяти свойственны допол­нительные затраты времени на взаимодействие микросхем памяти и контроллера. Так, в асинхронной схеме сигнал RAS будет сформирован только после поступле­ния в контроллер тактирующего импульса и будет воспринят микросхемой памя­ти через некоторое время. После этого память выдаст данные, но контроллер сможет их считать только по приходу следующего тактирующего импульса, так как он должен работать синхронно с остальными устройствами ВМ. Таким образом, на протяжении цикла чтения/записи происходят небольшие задержки из-за ожида­ния памятью контроллера и контроллером памяти.

Микросхемы DRAM. В первых микросхемах динамической памяти применялся наиболее простой способ обмена данными, часто называемый традиционным (con­ventional). Он позволял считывать и записывать строку памяти только на каждый пятый такт. Этапы такой процедуры были описаны ранее. Традици­онной DRAM соответствует формула 5-5-5-5. Микросхемы данного типа могли работать на частотах до 40 МГц и из-за своей медлительности (время доступа со­ставляло около 120 нс) просуществовали недолго.

Микросхемы FPMDRAM. Микросхемы динамического ОЗУ, реализующие ре­жим FPM, также относятся к ранним типам DRAM. Сущность режима была пока­зана ранее. Схема чтения для FPM DRAM описывается формулой 5-3-3-3 (всего 14 тактов). Применение схемы быстрого страничного доступа по­зволило сократить время доступа до 60 нс, что, с учетом возможности работать на более высоких частотах шины, привело к увеличению производительности памя­ти по сравнению с традиционной DRAM приблизительно на 70%. Данный тип микросхем применялся в персональных компьютерах примерно до 1994 года.

Микросхемы EDO DRAM. Следующим этапом в развитии динамических ОЗУ стали ИМС с гиперстраничным режимом доступа (НРМ, Hyper Page Mode), бо­лее известные как EDO (Extended Data Output - расширенное время удержания данных на выходе). Главная особенность технологии - увеличенное по сравне­нию с FPM DRAM время доступности данных на выходе микросхемы. В микро­схемах FPM DRAM выходные данные остаются действительными только при ак­тивном сигнале CAS, из-за чего во втором и последующих доступах к строке нужно три такта: такт переключения CAS в активное состояние, такт считывания данных и такт переключения CAS в неактивное состояние. В EDO DRAM по активному (спадающему) фронту сигнала CAS данные запоминаются во внутреннем регистре, где хранятся еще некоторое время после того, как поступит следующий активный фронт сигнала. Это позволяет использовать хранимые данные, когда CAS уже переведен в неактивное состояние. Иными словами, временные пара­метры улучшаются за счет исключения циклов ожидания момента стабилизации данных на выходе микросхемы.

Схема чтения у EDO DRAM уже 5-2-2-2, что на 20% быстрее, чем у FPM. Вре­мя доступа составляет порядка 30-40 нс. Следует отметить, что максимальная ча­стота системной шины для микросхем EDO DRAM не должна была превышать 66 МГц.

Микросхемы BEDO DRAM. Технология EDO была усовершенствована компа­нией VIA Technologies. Новая модификация EDO известна как BEDO (Burst EDO - пакетная EDO). Новизна метода в том, что при первом обращении считы­вается вся строка микросхемы, в которую входят последовательные слова пакета. За последовательной пересылкой слов (переключением столбцов) автоматически следит внутренний счетчик микросхемы. Это исключает необходимость выдавать адреса для всех ячеек пакета, но требует поддержки со стороны внешней логики. Способ позволяет сократить время считывания второго и последующих слов еще на один такт, благодаря чему формула приобретает вид 5-1-1-1.

Микросхемы EDRAM. Более быстрая версия DRAM была разработана подраз­делением фирмы Ramtron - компанией Enhanced Memory Systems. Технология реализована в вариантах FPM, EDO и BEDO. У микросхемы более быстрое ядро и внутренняя кэш-память. Наличие последней - главная особенность технологии. В роли кэш-памяти выступает статическая память (SRAM) емкостью 2048 бит. Ядро EDRAM имеет 2048 столбцов, каждый из которых соединен с внутренней кэш-памятью. При обращении к какой-либо ячейке одновременно считывается целая строка (2048 бит). Считанная строка заносится в SRAM, причем перенос информации в кэш-память практически не сказывается на быстродействии, по­скольку происходит за один такт. При дальнейших обращениях к ячейкам, отно­сящимся к той же строке, данные берутся из более быстрой кэш-памяти. Следую­щее обращение к ядру происходит при доступе к ячейке, не расположенной в строке, хранимой в кэш-памяти микросхемы.

Технология наиболее эффективна при последовательном чтении, то есть когда среднее время доступа для микросхемы приближается к значениям, характерным для статической памяти (порядка 10 нс). Главная сложность состоит в несовмес­тимости с контроллерами, используемыми при работе с другими видами DRAM.

Синхронные динамические ОЗУ. В синхронных DRAM обмен информацией син­хронизируется внешними тактовыми сигналами и происходит в строго определен­ные моменты времени, что позволяет взять все от пропускной способности шины «процессор-память» и избежать циклов ожидания. Адресная и управляющая ин­формация фиксируются в ИМС памяти. После чего ответная реакция микросхе­мы произойдет через четко определенное число тактовых импульсов, и это время процессор может использовать для других действий, не связанных с обращением к памяти. В случае синхронной динамической памяти вместо продолжительности цикла доступа говорят о минимально допустимом периоде тактовой частоты, и речь уже идет о времени порядка 8-10 нс.

Микросхемы SDRAM. Аббревиатура SDRAM (Synchronous DRAM - синхрон­ная DRAM) используется для обозначения микросхем «обычных» синхронных динамических ОЗУ. Кардинальные отличия SDRAM от рассмотренных выше асин­хронных динамических ОЗУ можно свести к четырем положениям:

· синхронный метод передачи данных на шину;

· конвейерный механизм пересылки пакета;

· применение нескольких (двух или четырех) внутренних банков памяти;

· передача части функций контроллера памяти логике самой микросхемы.

Синхронность памяти позволяет контроллеру памяти «знать» моменты готов­ности данных, за счет чего снижаются издержки циклов ожидания и поиска дан­ных. Так как данные появляются на выходе ИМС одновременно с тактовыми им­пульсами, упрощается взаимодействие памяти с другими устройствами ВМ.

В отличие от BEDO конвейер позволяет передавать данные пакета по тактам, благодаря чему ОЗУ может работать бесперебойно на более высоких частотах, чем асинхронные ОЗУ. Преимущества конвейера особенно возрастают при передаче длинных пакетов, но не превышающих длину строки микросхемы.

Значительный эффект дает разбиение всей совокупности ячеек на независи­мые внутренние массивы (банки). Это позволяет совмещать доступ к ячейке одного банка с подготовкой к следующей операции в остальных банках (перезарядкой управляющих цепей и восстановлением информации). Возможность держать открытыми одновременно несколько строк памяти (из разных банков) также спо­собствует повышению быстродействия памяти. При поочередном доступе к бан­кам частота обращения к каждому из них в отдельности уменьшается пропор­ционально числу банков и SDRAM может работать на более высоких частотах. Благодаря встроенному счетчику адресов SDRAM, как и BEDO DRAM, позволя­ет производить чтение и запись в пакетном режиме, причем в SDRAM длина паке­та варьируется и в пакетном режиме есть возможность чтения целой строки памя­ти. ИМС может быть охарактеризована формулой 5-1-1-1. Несмотря на то, что формула для этого типа динамической памяти такая же, что и у BEDO, способ­ность работать на более высоких частотах приводит к тому, что SDRAM с двумя банками при тактовой частоте шины 100 МГц по производительности может по­чти вдвое превосходить память типа BEDO.

Микросхемы DDR SDRAM. Важным этапом в дальнейшем развитии техноло­гии SDRAM стала DDR SDRAM (Double Data Rate SDRAM - SDRAM с удвоен­ной скоростью передачи данных). В отличие от SDRAM новая модификация вы­дает данные в пакетном режиме по обоим фронтам импульса синхронизации, за счет чего пропускная способность возрастает вдвое. Существует несколько специ­фикаций DDR SDRAM, в зависимости от тактовой частоты системной шины: DDR266, DDR333, DDR400, DDR533. Так, пиковая пропускная способность мик­росхемы памяти спецификации DDR333 составляет 2,7 Гбайт/с, а для DDR400 - 3,2 Гбайт/с. DDR SDRAM в настоящее время является наиболее распространен­ным типом динамической памяти персональных ВМ.

Микросхемы RDRAM, DRDRAM. Наиболее очевидные способы повышения эффективности работы процессора с памятью - увеличение тактовой частоты шины либо ширины выборки (количества одновременно пересылаемых разрядов). К сожалению, попытки совмещения обоих вариантов наталкиваются на существен­ные технические трудности (с повышением частоты усугубляются проблемы элек­тромагнитной совместимости, труднее становится обеспечить одновременность поступления потребителю всех параллельно пересылаемых битов информации). В большинстве синхронных DRAM (SDRAM, DDR) применяется широкая вы­борка (64 бита) при ограниченной частоте шины.

Принципиально отличный подход к построению DRAM был предложен ком­панией Rambus в 1997 году. В нем упор сделан на повышение тактовой частоты до 400 МГц при одновременном уменьшении ширины выборки до 16 бит. Новая па­мять известна как RDRAM (Rambus Direct RAM). Существует несколько разно­видностей этой технологии: Base, Concurrent и Direct. Во всех тактирование ведется по обоим фронтам синхросигналов (как в DDR), благодаря чему результирующая частота составляет соответственно 500-600, 600-700 и 800 МГц. Два первых ва­рианта практически идентичны, а вот изменения в технологии Direct Rambus (DRDRAM) весьма значительны.

Сначала остановимся на принципиальных моментах технологии RDRAM, ори­ентируясь в основном на более современный вариант - DRDRAM. Главным от­личием от других типов DRAM является оригинальная система обмена данными между ядром и контроллером памяти, в основе которой лежит так называемый «канал Rambus», применяющий асинхронный блочно-ориентированный протокол. На логическом уровне информация между контроллером и памятью передается пакетами.

Различают три вида пакетов: пакеты данных, пакеты строк и пакеты столбцов. Пакеты строк и столбцов служат для передачи от контроллера памяти команд уп­равления соответственно линиями строк и столбцов массива запоминающих эле­ментов. Эти команды заменяют обычную систему управления микросхемой с по­мощью сигналов RAS, CAS, WE и CS.

Массив ЗЭ разбит на банки. Их число в кристалле емкостью 64 Мбит составля­ет 8 независимых или 16 сдвоенных банков. В сдвоенных банка^ пара банков ис­пользует общие усилители чтения/записи. Внутреннее ядро микросхемы имеет 128-разрядную шину данных, что позволяет по каждому адресу столбца переда­вать 16 байт. При записи можно использовать маску, в которой каждый бит соот­ветствует одному байту пакета. С помощью маски можно указать, сколько байтов пакета и какие именно должны быть записаны в память.

Линии данных, строк и столбцов в канале полностью независимы, поэтому ко­манды строк, команды столбцов и данные могут передаваться одновременно, при­чем для разных банков микросхемы. Пакеты столбцов включают в себя по два поля и передаются по пяти линиям. Первое поле задает основную операцию записи или чтения. Во втором поле находится либо указание на использование маски записи (собственно маска передается по линиям данных), либо расширенный код опера­ции, определяющий вариант для основной операции. Пакеты строк подразделя­ются на пакеты активации, отмены, регенерации и команды переключения режи­мов энергопотребления. Для передачи пакетов строк выделены три линии.

Операция записи может следовать сразу за чтением - нужна лишь задержка на время прохождения сигнала по каналу (от 2,5 до 30 нс в зависимости от длины канала). Чтобы выровнять задержки в передаче отдельных битов передаваемого кода, проводники на плате должны располагаться строго параллельно, иметь оди­наковую длину (длина линий не должна превышать 12 см) и отвечать строгим тре­бованиям, определенным разработчиком.

Каждая запись в канале может быть конвейеризирована, причем время задерж­ки первого пакета данных составляет 50 нс, а остальные операции чтения/записи осуществляются непрерывно (задержка вносится только при смене операции с за­писи на чтение, и наоборот).

В имеющихся публикациях упоминается работа Intel и Rambus над новой вер­сией RDRAM, названной nDRAM, которая будет поддерживать передачу данных с частотами до 1600 МГц.

Микросхемы SLDRAM. Потенциальным конкурентом RDRAM на роль стандарта архитектуры памяти для будущих персональных ВМ выступает новый вид ди­намического ОЗУ, разработанный консорциумом производителей ВМ SyncLink Consortium и известный под аббревиатурой SLDRAM. В отличие от RDRAM, тех­нология которой является собственностью компаний Rambus и Intel, данный стан­дарт - открытый. На системном уровне технологии очень похожи. Данные и ко­манды от контроллера к памяти и обратно в SLDRAM передаются пакетами по 4 или 8 посылок. Команды, адрес и управляющие сигналы посылаются по однонап­равленной 10-разрядной командной шине. Считываемые и записываемые данные передаются по двунаправленной 18-разрядной шине данных. Обе шины работают на одинаковой частоте. Пока что еще эта частота равна 200 МГц, что, благодаря технике DDR, эквивалентно 400 МГц. Следующие поколения SLDRAM должны работать на частотах 400 МГц и выше, то есть обеспечивать эффективную частоту более 800 МГц.

К одному контроллеру можно подключить до 8 микросхем памяти. Чтобы из­бежать запаздывания сигналов от микросхем, более удаленных от контроллера, временные характеристики для каждой микросхемы определяются и заносятся в ее управляющий регистр при включении питания.

Микросхемы ESDRAM. Это синхронная версия EDRAM, в которой использу­ются те же приемы сокращения времени доступа. Операция записи в отличие от чтения происходит в обход кэш-памяти, что увеличивает производительность ESDRAM при возобновлении чтения из строки, уже находящейся в кэш-памяти. Благодаря наличию в микросхеме двух банков простои из-за подготовки к опера­циям чтения/записи сводятся к минимуму. Недостатки у рассматриваемой мик­росхемы те же, что и у EDRAM - усложнение контроллера, так как он должен.читывать возможность подготовки к чтению в кэш-память новой строки ядра. Кроме того, при произвольной последовательности адресов кэш-память задействуется неэффективно.

Микросхемы CDRAM. Данный тип ОЗУ разработан в корпорации Mitsubishi, и его можно рассматривать как пересмотренный вариант ESDRAM, свободный от некоторых ее несовершенств. Изменены емкость кэш-памяти и принцип размеще­ния в ней данных. Емкость одного блока, помещаемого в кэш-память, уменьшена до 128 бит, таким образом, в 16-килобитовом кэше можно одновременно хранить копии из 128 участков памяти, что позволяет эффективнее использовать кэш-па­мять. Замена первого помещенного в кэш участка памяти начинается только после заполнения последнего (128-го) блока. Изменению подверглись и средства доступа. Так, в микросхеме используются раздельные адресные шины для статического кэша и динамического ядра. Перенос данных из динамического ядра в кэш-память со­вмещен с выдачей данных на шину, поэтому частые, но короткие пересылки не снижают производительности ИМС при считывании из памяти больших объе­мов информации и уравнивают CDRAM с ESDRAM, а при чтении по выбо­рочным адресам CDRAM явно выигрывает. Необходимо, однако, отметить, что вышеперечисленные изменения привели к еще большему усложнению кон­троллера памяти.

Конец работы -

Эта тема принадлежит разделу:

Организация ЭВМ и систем

Сибирский государственный аэрокосмический университет.. имени академика м ф решетнева.. организация ЭВМ и систем..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Уровни детализации структуры вычислительной машины
Вычислительная машина как законченный объект являет собой плод усилий спе­циалистов в самых различных областях человеческих знаний. Каждый специалист рассматривает вычислительную ма

Эволюция средств автоматизации вычислений
Попытки облегчить, а в идеале автоматизировать процесс вычислений имеют давнюю историю, насчитывающую более 5000 лет. С развитием науки и технологий средства автоматизации вычислений непрерывно сов

Нулевое поколение (1492-1945)
Для полноты картины упомянем два события, произошедшие до нашей эры: пер­вые счеты - абак, изобретенные в древнем Вавилоне за 3000 лет до н. э., и их более «современный» вариант с к

Первое поколение(1937-1953)
На роль первой в истории электронной вычислительной машины в разные периоды претендовало несколько разработок. Общим у них было использование схем на базе электронно-вакуумных ламп

Второе поколение (1954-1962)
Второе поколение характеризуется рядом достижений в элементной базе, струк­туре и программном обеспечении. Принято считать, что поводом для выделения нового поколения ВМ стали техно

Третье поколение (1963-1972)
Третье поколение ознаменовалось резким увеличением вычислительной мощно­сти ВМ, ставшим следствием больших успехов в области архитектуры, технологии и программного обеспечения. Осно

Четвертое поколение (1972-1984)
Отсчет четвертого поколения обычно ведут с перехода на интегральные микро­схемы большой (large-scale integration, LSI) и сверхбольшой (very large-scale inte­gration, VLSI) степени и

Пятое поколение (1984-1990)
Главным поводом для выделения вычислительных систем второй половины 80-х го­дов в самостоятельное поколение стало стремительное развитие ВС с сотнями процессоров, ставшее побудитель

Концепция машины с хранимой в памяти программой
Исходя из целей данного раздела, введем новое определение термина «вычисли­тельная машина» как совокупности технических средств, служащих для автома­тизированной обработки дискретны

Принцип двоичного кодирования
Согласно этому принципу, вся информация, как данные, так и команды, кодиру­ются двоичными цифрами 0 и 1. Каждый тип информации представляется двоичной последовательностью и имеет св

Принцип программного управления
Все вычисления, предусмотренные алгоритмом решения задачи, должны быть пред­ставлены в виде программы, состоящей из последовательности управляющих слов - команд. Каждая команда пред

Принцип однородности памяти
Команды и данные хранятся в одной и той же памяти и внешне в памяти неразли­чимы. Распознать их можно только по способу использования. Это позволяет про­изводить над командами те же

Фон-неймановская архитектура
В статье фон Неймана определены основные устройства ВМ, с помощью которых должны быть реализованы вышеперечисленные принципы. Большинство совре­менных ВМ по своей структуре отвечают принципу програ

Структуры вычислительных машин
В настоящее время примерно одинаковое распространение получили два способа построения вычислительных машин: с непосредственными связями и на основе шины. Типичным представи

Структуры вычислительных систем
Понятие «вычислительная система» предполагает наличие множества процессо­ров или законченных вычислительных машин, при объединении которых исполь­зуется один из двух подходов.

Перспективные направления исследований в области архитектуры
Основные направления исследований в области архитектуры ВМ и ВС можно ус­ловно разделить на две группы: эволюционные и революционные. К первой груп­пе следует отнести исследования,

Понятие архитектуры системы команд
Системой команд вычислительной машины называют полный перечень команд, которые способна выполнять данная ВМ. В свою очередь, под архитектурой сис­темы команд (АСК) принято определят

Стековая архитектура
Стеком называется память, по своей структурной организации отличная от основной памяти ВМ. Принципы построения стековой памяти детально рассматриваются позже, здесь же выделим только те аспекты, ко

Аккумуляторная архитектура
Архитектура на базе аккумулятора исторически возникла одной из первых. В ней для хранения одного из операндов арифметической или логической операции в процессоре имеется выделенный регистр - аккуму

Регистровая архитектура
В машинах данного типа процессор включает в себя массив регистров (регистровый файл), известных как регистры общего назначения (РОН). Эти регистры, в каком-то смысле, можно рассматр

Архитектура с выделенным доступом к памяти
В архитектуре с выделенным доступом к памяти обращение к основной памяти возможно только с помощью двух специальных команд: load и store. В английской транскрипции данную архитектуру

Форматы команд
Типовая команда, в общем случае, должна указывать: · подлежащую выполнению операцию; · адреса исходных данных (операндов), над которыми выполняется операция; · адрес, по

Длина команды
Это важнейшее обстоятельство, влияющее на организацию и емкость памяти, структуру шин, сложность и быстродействие ЦП. С одной стороны, удобно иметь в распоряжении мощный набор команд, то есть как м

Разрядность адресной части
В адресной части команды содержится информация о местонахождении исходных данных и месте сохранения результата операции. Обычно местонахождение каждого из операндов и результата задается в команде

Количество адресов в команде
Для определения количества адресов, включаемых в адресную часть, будем использовать термин адресность. В «максимальном» варианте необходимо указать три компонента: адрес первого опе

Адресность и время выполнения программы
Время выполнения одной команды складывается из времени выполнения опера­ции и времени обращения к памяти. Для трехадресной команды последнее суммируется из четырех составля

Способы адресации операндов
Вопрос о том, каким образом в адресном поле команды может быть указано место­положение операндов, считается одним из центральных при разработке архитек­туры ВМ. С точки зрения сокра

Непосредственная адресация
При непосредственной адресации (НА) в адресном поле команды вместо адреса содержится непосредственно сам операнд (рис. 15). Этот способ может приме­няться при выполнении арифметичес

Прямая адресация
При прямой или абсолютной адресации (ПА) адресный код прямо указывает но­мер ячейки памяти, к которой производится обращение (рис. 22), то есть адресный код совпадает с исполнительн

Косвенная адресация
Одним из путей преодоления проблем, свойственных прямой адресации, может служить прием, когда с помощью ограниченного адресного поля команды указы­вается адрес ячейки, в свою очеред

Регистровая адресация
Регистровая адресация (РА) напоминает прямую адресацию. Различие состоит в том, что адресное поле инструкции указывает не на ячейку памяти, а на регистр процессора (рис. 24). Иденти

Косвенная регистровая адресация
Косвенная регистровая адресация (КРА) представляет собой косвенную адреса­цию, где исполнительный адрес операнда хранится не в ячейке основной памяти, а в регистре процессора. Соотв

Адресация со смещением
При адресации со смещением исполнительный адрес формируется в результате суммирования содержимого адресного поля команды с содержимым одного или нескольких регистров процессора (рис

Относительная адресация
При относительной адресации (ОА) для получения исполнительного адреса опе­ранда содержимое подполя Aк команды складывается с содержимым счетчика ко­манд (рис. 27). Таким

Базовая регистровая адресация
В случае базовой регистровой адресации (БРА) регистр, называемый базовым, со­держит полноразрядный адрес, а подполе Ас - смещение относительно этого ад­реса. Ссылка на ба

Индексная адресация
При индексной адресации (ИА) подполе Ас содержит адрес ячейки памяти, а ре­гистр (указанный явно или неявно) - смещение относительно этого адреса. Как видно, этот способ

Страничная адресация
Страничная адресация (СТА) предполагает разбиение адресного пространства на страницы. Страница определяется своим начальным адресом, выступающим в ка­честве базы. Старшая часть этог

Цикл команды
Программа в фон-неймановской ЭВМ реализуется центральным процессором (ЦП) посредством последовательного исполнения образующих эту программу команд. Действия, требуемые для выборки (

Основные показатели вычислительных машин
Использование конкретной вычислительной машины имеет смысл, если ее показатели соответствуют показателям, определяемым требованиями к реализации заданных алгоритмов. В качестве осно

Программная архитектура i80х86
Одним из наиболее распространенных процессоров общего назначения на данный момент являются процессоры с архитектурой x86 (Intel IA-32). Родоначальником семейства этих процессоров явился ЦП i8086. И

Сегмент кода
В сегменте кода обычно записываются команды микропроцессора, которые выполняются последовательно друг за другом. Для определения адреса следующей команды после выполнения предыдущей

Переменные в программе
Во всех остальных сегментах выделяется место для переменных, используемых в программе. Разделение на сегменты данных, сегмент стека и сегмент дополнительных данных связано с тем, чт

Сегмент стека
Для хранения временных значений, для которых нецелесообразно выделять переменные, предназначена специальная область памяти, называемая стеком. Для адресации такой области служит сег

Микропроцессор i8086
С точки зрения программиста микропроцессор представляется в виде набора регистров. Регистры предназначены для хранения некоторых данных и поэтому, в некотором смысле, они соответств

Доступ к ячейкам памяти
Как уже отмечалось, в состав любой микропроцессорной системы обязательно должна входить память, в которой располагаются программы и необходимые для их работы данные. Физическая и ло

Команды микропроцессора
Программа, работающая в микропроцессорной системе, в конечном виде представляет собой набор байтов, воспринимаемый микропроцессором как код той или иной команды вместе с соответству

Основные группы команд и их краткая характеристика
Для упрощения процесса программирования на языке ассемблера используется мнемоническая запись команд микропроцессора (обычно в виде сокращений английских слов, описывающих действия

Способы адресации в архитектуре i80x86
Рассмотренные выше способы адресации могут быть в полной мере применены при написании программы на языке ассемблера. Рассмотрим методы реализации наиболее часто применяющихся способ

Адресация ячеек памяти
Кроме регистров и констант в командах можно использовать ячейки памяти. Естественно, что они могут использоваться и как источник и как приемник данных. Более точно, в командах используется

Прямая адресация
При прямой адресации в команде указывается смещение, которое соответствует началу размещения в памяти соответствующего операнда. По умолчанию, при использовании упрощенных директив описания сегмент

Косвенная адресация
При косвенной адресации смещение соответствующего операнда в сегменте содержится в одном из регистров микропроцессора. Таким образом, текущее содержимое регистра микропроцессора определяет исполнит

Косвенная адресация по базе
При использовании косвенной адресации к содержимому регистра можно добавлять константу. В этом случае исполнительный адрес вычисляется как сумма содержимого соответствующего регистра и этой констан

Адресация по базе с индексированием
В микропроцессоре i8086 можно использовать также комбинацию косвенной индексной адресации и адресации по базе. Исполнительный адрес операнда определяется как сумма трех составляющих – содержимого д

Лабораторная работа. Программная архитектура процессора i8086
На языке ассемблера процессора i8086 с использованием любого удобного пакета (рекомендуется TASM) реализуйте следующие задачи: 1. Протабулировать функцию у

Структура взаимосвязей вычислительной машины
Совокупность трактов, объединяющих между собой основные устройства ВМ (цен­тральный процессор, память и модули ввода/вывода), образует структуру взаи­мосвязей вычислительной машины.

Типы шин
Важным критерием, определяющим характеристики шины, может служить ее це­левое назначение. По этому критерию можно выделить: · шины «процессор-память»; · шины ввода

Системная шина
С целью снижения стоимости некоторые ВМ имеют общую шину для памяти и устройств ввода/вывода. Такая шина часто называется системной. Системная шина служит для физического и логическ

Вычислительная машина с одной шиной
В структурах взаимосвязей с одной шиной имеется одна системная шина, обеспечивающая обмен информацией между процессором и памятью, а также между УВВ с одной стороны, и процессором л

Вычислительная машина с двумя видами шин
Хотя контроллеры устройств ввода/вывода (УВВ) могут быть подсоединены не­посредственно к системной шине, больший эффект достигается применением од­ной или нескольких шин ввода/вывод

Вычислительная машина с тремя видами шин
Для подключения быстродействующих периферийных устройств в систему шин может быть добавлена высокоскоростная шина расширения.

Механические аспекты
Основная шина, объединяющая устройства вычислительной машины, обычно размещается на так называемой объединительной или материнской плате. Шину образуют тонкие параллельные медные по

Электрические аспекты
Все устройства, использующие шину, электрически подсоединены к ее сигналь­ным линиям, представляющим собой электрические проводники. Меняя уровни напряжения на сигнальных линиях, ве

Распределение линий шины
Любая транзакция на шине начинается с выставления ведущим устройством ад­ресной информации. Адрес позволяет выбрать ведомое устройство и установить соединение между ним и ведущим. Д

Выделенные и мультиплексируемые линии
В некоторых ВМ линии адреса и данных объединены в единую мультиплексируемую шину адреса/данных. Такая шина функционирует в режиме разделения времени, по­скольку цикл шины разбит на

Схемы приоритетов
Каждому потенциальному ведущему присваивается определенный уровень прио­ритета, который может оставаться неизменным (статический или фиксированный приоритет) либо изменяться по како

Схемы арбитража
Арбитраж запросов на управление шиной может быть организован по централизо­ванной или децентрализованной схеме. Выбор конкретной схемы зависит от тре­бований к производительности и

Интерфейс PCI
Доминирующее положение на рынке ПК достаточное длительное время занимали системы на основе шины PCI (Peripheral Component Interconnect – Взаимодействие периферийных компонентов). Эт

Порт AGP
С повсеместным внедрением технологий мультимедиа пропускной способности шины PCI стало не хватать для производительной работы видеокарты. Чтобы не менять сложившийся стандарт на шин

PCI Express
Интерфейс PCI Express (первоначальное название - 3GIO) использует концепцию PCI, однако физическая их реализация кардинально отличается. На физическом уровне PCI Express представляе

Локализация данных
Под локализацией данных будем понимать возможность обращения к одному из ВУ, а также адресации данных на нем. Адрес ВУ обычно содержится в адресной части команд ввода/вывод

Управление и синхронизация
Функция управления и синхронизации заключается в том, что МВВ должен коор­динировать перемещение данных между внутренними ресурсами ВМ и внешними устройствами. При разработке систем

Обмен информацией
Основной функцией МВВ является обеспечение обмена информацией. Со сторо­ны «большого» интерфейса - это обмен с ЦП, а со стороны «малого» интерфей­са - обмен с ВУ. В таком плане треб

Система прерываний и исключений в архитектуре IA-32
Прерывания и исключения - это события, которые указывают на возникновение в системе или в выполняемой в данный момент задаче определенных условий, требующих вмешательства процессора

Расширенный программируемый контроллер прерываний (APIC)
Микропроцессоры IA-32, начиная с модели Pentium, содержат встроенный расширенный программируемый контроллер прерываний (APIC). Встроенный APIC предназначен для регистрирования преры

Конвейеризация вычислений
Совершенствование элементной базы уже не приводит к кардинальному росту производительности ВМ. Более перспективными в этом плане представляются архитектурные приемы, среди которых о

Синхронные линейные конвейеры
Эффективность синхронного конвейера во многом зависит от правильного выбо­ра длительности тактового периода Тк. Минимально допустимую Тк можно опре­делить как

Метрики эффективности конвейеров
Чтобы охарактеризовать эффект, достигаемый за счет конвейеризации вычисле­ний, обычно используют три метрики: ускорение, эффективность и производитель­ность. Под ускорен

Нелинейные конвейеры
Конвейер не всегда представляет собой линейную цепочку этапов. В ряде ситуа­ций оказывается выгодным, когда функциональные блоки соединены между со­бой не последовательно, а в соотв

Конвейер команд
Идея конвейера команд была предложена в 1956 году академиком С. А. Лебедевым. Как известно, цикл команды представляет собой последовательность этапов. Возложив реализацию каждого из

Конфликты в конвейере команд
Полученное в примере число 14 характеризует лишь потенциальную производительность конвейера команд, На практике в силу возникающих в конвейере конфликтных ситуаций достичь такой про

Методы решения проблемы условного перехода
Несмотря на важность аспекта вычисления исполнительного адреса точки пере­хода, основные усилия проектировщиков ВМ направлены на решение проблемы условных переходов, поскольку именн

Предсказание переходов
Предсказание переходов на сегодняшний день рассматривается как один из наибо­лее эффективных способов борьбы с конфликтами по управлению. Идея заключа­ется в том, что еще до момента

Статическое предсказание переходов
Статическое предсказание переходов осуществляется на основе некоторой апри­орной информации о подлежащей выполнению программе. Предсказание делает­ся на этапе компиляции программы и

Динамическое предсказание переходов
В динамических стратегиях решение о наиболее вероятном исходе команды УП принимается в ходе вычислений, исходя из информации о предшествующих пере­ходах (истории переходов), собирае

Суперконвейерные процессоры
Эффективность конвейера находится в прямой зависимости от того, с какой час­тотой на его вход подаются объекты обработки. Добиться n-кратного увеличения темпа работы конвейера можно

Архитектуры с полным и сокращенным набором команд
Современная технология программирования ориентирована на языки высокого уровня (ЯВУ), главная задача которых - облегчить процесс написания программ. Более 90% всего процесса програм

Основные черты RISC-архитектуры
Главные усилия в архитектуре RISC направлены на построение максимально эф­фективного конвейера команд, то есть такого, где все команды извлекаются из па­мяти и поступают в ЦП на обр

Преимущества и недостатки RISC
Сравнивая достоинства и недостатки CISC и RISC, невозможно сделать однознач­ный вывод о неоспоримом преимуществе одной архитектуры над другой. Для от­дельных сфер использования ВМ л

Суперскалярные процессоры
Поскольку возможности по совершенствованию элементной базы уже практичес­ки исчерпаны, дальнейшее повышение производительности ВМ лежит в плоско­сти архитектурных решений. Как уже о

Лабораторная работа. Исполнительные устройства ВМ
Счетчики.Счетчиком называют устройство, сигналы на выходе которого отображают число импульсов, поступивших на счетный вход. JK-триггер может служить примером просте

Характеристики систем памяти
Перечень основных характеристик, которые необходимо учитывать, рассматривая конкретный вид ЗУ, включает в себя: · место расположения; · емкость; · единицу

Иерархия запоминающих устройств
Память часто называют «узким местом» фон-неймановских ВМ из-за ее серьезного отставания по быстродействию от процессоров, причем разрыв этот неуклонно уве­личивается. Так, если прои

Основная память
Основная память (ОП) представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно (исключение составляют лишь регистры центрального процессора). Информация, хранящая

Блочная организация основной памяти
Емкость основной памяти современных ВМ слишком велика, чтобы ее можно было реализовать на базе единственной интегральной микросхемы (ИМС). Необходи­мость объединения нескольких ИМС

Организация микросхем памяти
Интегральные микросхемы (ИМС) памяти организованы в виде матрицы ячеек, каждая из которых, в зависимости от разрядности ИМС, состоит из одного или более запоминающих элементов (ЗЭ)

Синхронные и асинхронные запоминающие устройства
В качестве первого критерия, по которому можно классифицировать запоминаю­щие устройства основной памяти, рассмотрим способ синхронизации. С этих по­зиций известные типы ЗУ подразде

Оперативные запоминающие устройства
Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, то есть являются энергозависимыми (vo

Статическая и динамическая оперативная память
В статических ОЗУ запоминающий элемент может хранить записанную инфор­мацию неограниченно долго (при наличии питающего напряжения). Запоминаю­щий элемент динамического

Статические оперативные запоминающие устройства
Напомним, что роль запоминающего элемента в статическом ОЗУ исполняет триггер. Статические ОЗУ на настоящий момент – наиболее быстрый, правда, и наиболее дорогостоящий вид оперативн

Лабораторная работа. Расширенная работа с памятью и передача управления в программе
Реализуйте на языке ассемблера микропроцессора i8086 следующие программы, используя команды передачи управления call и ret: 1. Определить резу

Магнитные диски
Информация в ЗУ на магнитных дисках (МД) хранится на плоских металличес­ких или пластиковых пластинах (дисках), покрытых магнитным материалом. Дан­ные записываются и считываются с д

Организация данных и форматирование
Данные на диске организованы в виде набора концентрических окружностей, на­зываемых дорожками (рис. 72). Каждая из них имеет ту же ширину, что и головка. Соседние дорожки разделены промежутками. Эт

Внутреннее устройство дисковых систем
В ЗУ с фиксированными головками приходится по одной головке считывания/ записи на каждую дорожку. Головки смонтированы на жестком рычаге, пересека­ющем все дорожки диска. В дисковом

Концепция массива с избыточностью
Магнитные диски, будучи основой внешней памяти любой ВМ, одновременно ос­таются и одним из «узких мест» из-за сравнительно высокой стоимости, недоста­точной производительности и отк

Повышение производительности дисковой подсистемы
Повышение производительности дисковой подсистемы в RAID достигается с по­мощью приема, называемого расслоением или расщеплением (striping). В его осно­ве лежит разбиение данных и ди

Повышение отказоустойчивости дисковой подсистемы
Одной из целей концепции RAID была возможность обнаружения и коррекции ошибок, возникающих при отказах дисков или в результате сбоев. Достигается это за счет избыточного дискового п

RAID уровня 0
RAID уровня 0, строго говоря, не является полноценным членом семейства RAID, поскольку данная схема не содержит избыточности и нацелена только на повыше­ние производительности в уще

RAID уровня 1
В RAID 1 избыточность достигается с помощью дублирования данных. В принци­пе исходные данные и их копии могут размещаться по дисковому массиву произ­вольно, главное чтобы они находи

RAID уровня 2
В системах RAID 2 используется техника параллельного доступа, где в выполне­нии каждого запроса на В/ВЫВ одновременно участвуют все диски. Обычно шпин­дели всех дисков синхронизиров

RAID уровня 3
RAID 3 организован сходно с RAID2. Отличие в том, что RAID 3 требует только одного дополнительного диска - диска паритета, вне зависимости от того, на­сколько велик массив дисков (р

RAID уровня 4
По своей идее и технике формирования избыточной информации RAID 4 иденти­чен RAID 3, только размер полос в RAID 4 значительно больше (обычно один-два физических блока на диске). Гла

RAID уровня 5
RAID 5 имеет структуру, напоминающую RAID 4. Различие заключается в том, что RAID 5 не содержит отдельного диска для хранения полос паритета, а разно­сит их по всем дискам. Типичное

RAID уровня 6
RAID 6 очень похож на RAID 5. Данные также разбиваются на полосы размером в блок и распределяются по всем дискам массива. Аналогично, полосы паритета распределены по разным дискам.

RAID уровня 7
Схема RAID 7, запатентованная Storage Computer Corporation, объединяет мас­сив асинхронно работающих дисков и кэш-память, управляемые встроенной в кон троллер массива операционной с

RAID уровня 10
Данная схема совпадает с RAID 0, но в отличие от нее роль отдельных дисков вы­полняют дисковые массивы, построенные по схеме RAID 1 (рис. 83). Таким образом, в RAID 10 соче

Особенности реализации RAID-систем
Массивы RAID могут быть реализованы программно, аппаратно или как комби­нация программных и аппаратных средств. При программной реализации используются обычные дисковые кон

Оптическая память
В 1983 году была представлена первая цифровая аудиосистема на базе компакт-дисков (CD - compact disk). Компакт-диск - это односторонний диск, способный хранить более чем 60-минутную

Уровни параллелизма
Методы и средства реализации параллелизма зависят от того, на каком уровне он должен обеспечиваться. Обычно различают следующие уровни параллелизма: · Уровень заданий. Неск

Параллелизм уровня программ
О параллелизме на уровне программы имеет смысл говорить в двух случаях. Во-первых, когда в программе могут быть выделены независимые участки, которые допустимо выполнять параллельно

Параллелизм уровня команд
Параллелизм на уровне команд имеет место, когда обработка нескольких команд или выполнение различных этапов одной и той же команды может перекрываться во времени. Разработчики вычис

Профиль параллелизма программы
Число процессоров многопроцессорной системы, параллельно участвующих в вы­полнении программы в каждый момент времени t, определяют понятием степень параллелизма D(t) (


Рассмотрим параллельное выполнение программы со следующими характеристи­ками: · О(п) - общее число операций (команд), выполненных на п-процессорной сис­теме;

Закон Амдала
Приобретая для решения своей задачи параллельную вычислительную систему, пользователь рассчитывает на значительное повышение скорости вычислений за счет распределения вычислительной

Закон Густафсона
Известную долю оптимизма в оценку, даваемую законом Амдала, вносят исследо­вания, проведенные уже упоминавшимся Джоном Густафсоном из NASA Ames Research. Решая на вычислительной сис

Когерентность кэш- памяти в SMP- системах
Требования, предъявляемые современными процессорами к полосе пропускания памяти можно существенно сократить путем применения больших многоуровневых кэшей. Тогда, если эти требования

Когерентность кэш- памяти в MPP-системах
Существуют два различных способа построения крупномасштабных систем с распределенной памятью. Простейший способ заключается в том, чтобы исключить аппаратные механизмы, обеспечивающ

Организация прерываний в мультипроцессорных системах
Рассмотрим реализацию прерываний в наиболее простых симметричных многопроцессорных системах, в которых используется несколько процессоров, объединенных общей шиной. Каждый процессор

Заключение
Охватить все аспекты строения и организации вычислительных машин в одном издании (да и в рамках одного курса) не представляется возможным. Знания в этой области человеческой деятель

Библиографический список
1. Авен, О. И. Оценка качества и оптимизации вычисли­тельных систем / О.И. Авен, Н. Я. Турин, А. Я. Коган. – М.: Наука, 1982. – 464 с. 2. Воеводин, В. В. Параллельные вычи

Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, т.е. являются энергозависимыми (volatile memory). Широкое распространение таких устройств связано с рядом их достоинств по сравнению с энергонезависимыми типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотреблением, более высоким быстродействием и невысокой себестоимостью хранения единицы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: динамическую память (DRAM - Dynamic Random Access Memory) и статическую память (SRAM - Static Random Access Memory).

Статическая и динамическая оперативная память

В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой триггер представляет собой схему с двумя устойчивыми состояниями, обычно состоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзисторами обеспечивает большую емкость микросхемы, а следовательно, меньшую стоимость, однако у такой схемы большой ток утечки, когда информация просто хранится. Также триггер на четырех транзисторах более чувствителен к воздействию внешних источников излучения, которые могут стать причиной потери информации. Наличие двух дополнительных транзисторов позволяет в какой-то мере компенсировать упомянутые недостатки схемы на четырех транзисторах, но, главное - увеличить быстродействие памяти.

Рис. 5.7. Запоминающий элемент статического ОЗУ

Запоминающий элемент динамической памяти значительно проще. Он состоит из одного конденсатора и запирающего транзистора (рис. 5.8).

Рис. 5.8. Запоминающий элемент динамического ОЗУ

Наличие или отсутствие заряда в конденсаторе интерпретируются как 1 или 0 соответственно. Простота схемы позволяет достичь высокой плотности размещения ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже при хорошем диэлектрике с электрическим сопротивлением в несколько тераом (10 12 Ом) используемом при изготовлении элементарных конденсаторов ЗЭ, заряд теряется достаточно быстро. Размеры у такого конденсатора микроскопические, а емкость имеет порядок 1СГ 15 Ф. При такой емкости на одном конденсаторе накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ динамической памяти составляет сотни или даже десятки миллисекунд, поэтому заряд необходимо успеть восстановить в течение данного отрезка времени, иначе хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ называется регенерацией и осуществляется каждые 2-8 мс,

В различных типах ИМС динамической памяти нашли применение три основных метода регенерации:

Одним сигналом RAS (ROR - RAS Only Refresh);

Сигналом CAS, предваряющим сигнал RAS (CBR - CAS Before RAS);

Автоматическая регенерация (SR - Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM. На шину адреса выдается адрес регенерируемой строки, сопровождаемый сигналом RAS. При этом выбирается строка ячеек и хранящиеся там данные поступают на внутренние цепи микросхемы, после чего записываются обратно. Так как сигнал CAS не появляется, цикл чтения/записи не начинается. В следующий раз на шину адреса подается адрес следующей строки и т. д., пока не восстановятся все ячейки, после чего цикл повторяется. К недостаткам метода можно отнести занятость шины адреса в момент регенерации, когда доступ к другим устройствам ВМ блокирован.

Особенность метода CBR в том, что если в обычном цикле чтения/записи сигнал RAS всегда предшествует сигналу CAS, то при появлении сигнала CAS первым начинается специальный цикл регенерации. В этом случае адрес строки не передается, а микросхема использует свой внутренний счетчик, содержимое которого увеличивается на единицу при каждом очередном CBR-цикле. Режим позволяет регенерировать память, не занимая шину адреса, то есть более эффективен.

Автоматическая регенерация памяти связана с энергосбережением, когда система переходит в режим «сна» и тактовый генератор перестает работать. При отсутствии внешних сигналов RAS и CAS обновление содержимого памяти методами ROR или CBR невозможно, и микросхема производит регенерацию самостоятельно, запуская собственный генератор, который тактирует внутренние цепи регенерации.

Область применения статической и динамической памяти определяется скоростью и стоимостью. Главным преимуществом SRAM является более высокое быстродействие (примерно на порядок выше, чем у DRAM). Быстрая синхронная SRAM может работать со временем доступа к информации, равным времени одного тактового импульса процессора. Однако из-за малой емкости микросхем и высокой стоимости применение статической памяти, как правило, ограничено относительно небольшой по емкости кэш-памятью первого (L1), второго (L2) или третьего (L3) уровней. В то же время самые быстрые микросхемы динамической памяти на чтение первого байта пакета все еще требуют от пяти до десяти тактов процессора, что замедляет работу всей ВМ. Тем не менее благодаря высокой плотности упаковки ЗЭ и низкой стоимости именно DRAM используется при построении основной памяти ВМ.

Основой ячейки памяти в ЗУ статического типа является триггер. В качестве базовых элементов для реализации триггера используются полевые транзисторы. Использование полевых транзисторов обусловлено тем, что они потребляют меньшую мощность, чем биполярные транзисторы, следовательно, и построенные на их основе микросхемы памяти являются более экономичными.

На рисунке 19.1 представлен триггер на МОП-транзисторах с индуцируемым p -каналом. Для отпирания такого транзистора напряжение на его затворе относительно истока должно быть меньше нуля: .

Пусть в исходном состоянии транзистор VT3 открыт, a VT1 закрыт (состояние хранения нуля). Транзисторы VT2 и VT4 выполняют роль резисторов, поэтому на стоке транзистора VT3 будет потенциал напряжения питания , а на стоке транзистора VT1 – нулевой потенциал. Транзисторы VT5 и VT6 осуществляют запись и считывание информации. В режиме хранения данных напряжения на разрядных линиях P0 и P1 равны нулю, а на линии потенциал равен напряжению питания схемы . При этом напряжение сток-исток на транзисторе VT5 равно нулю, и транзистор VT5 закрыт. Напряжение транзистора VT6 равно нулю и он также закрыт.

Рисунке 19.1 – Принципиальная схема ячейки ОЗУ статического типа

Для установления триггера в единичное состояние (запись единицы) на линию подается нулевой потенциал, а на разрядную линию P1 потенциал равный . При этом транзистор VT5 будет включен инверсно, т. е. истоком становится вывод, подсоединенный к разрядной линии P1. Напряжение затвор-исток инверсно включенного транзистора VT5 становится меньше нуля и транзистор VT5 открывается. Положительный сигнал поступает на затвор транзистора VT3 , при этом становится равным нулю и транзистор VT3 закрывается. В результате на затвор транзистора VT1 поступает нулевой потенциал. У этого транзистора становится отрицательным, и транзистор VT1 открывается, на его стоке устанавливается положительное напряжение, что соответствует единичному состоянию триггера. Напряжение на стоке VT3 становится равным нулю.

Для записи нуля необходимо при нулевом напряжении на линии А подать напряжение на разрядную линию P0 , при этом через открытый транзистор VT6 положительное напряжение, попадая на затвор транзистора VT1, запирает его, что приводит к открыванию транзистора VT3. На стоке транзистора VT1 установится нулевой потенциал, а на стоке транзистора VT3 – потенциал напряжения питания.

Для считывания информации, предварительно записанной в триггер, необходимо подать нулевой потенциал только на линию. При этом если был открыт транзистор VT1 (единичное состояние), то отрицательным напряжением будет открыт транзистор VT5 и через него высокий потенциал поступит в разрядную линию P1 . Если триггер находится в состоянии нуля, то откроется транзистор VT6 и высокий потенциал поступит в разрядную линию Р0.



На рисунке 19.2 приведена типичная структура микросхемы ОЗУ статического типа. Информация хранится в накопителе. Накопитель представляет собой матрицу, составленную из ячеек памяти рассмотренных выше. Для поиска требуемой ячейки памяти указываются строка и столбец, соответствующие положению ячейки памяти в накопителе.


Рисунок 19.2 – Структура микросхемы ОЗУ статистического типа

Адрес ячейки памяти (ЯП) в виде двоичного числа принимается по шине адреса в регистр адреса. Число разрядов адреса связано с емкостью накопителя. Число строк и столбцов накопителя выбираются равными целой степени двух. Если число строк и число столбцов , то общее число ячеек памяти (емкость накопителя)
, где – число разрядов адреса, принимаемого в регистр адреса. Например, при емкости число разрядов адреса . При этом выбирается . В этом случае число строк и число столбцов накопителя равно . Требуемая размерность матрицы накопителя – .

Разряды регистра адреса подразделяются на две группы. Одна группа в n1 разрядов определяет двоичный номер строки, в которой расположена ячейка памяти, другая группа в n2 разрядов определяет двоичный номер столбца, в котором находится ячейка памяти. Каждая группа разрядов адреса подается на соответствующий дешифратор строк или столбцов. При этом каждый из дешифраторов создает на одной из своих выходных цепей уровень логического нуля. На остальных выходах устанавливается уровень логической единицы. Ячейка памяти, оказавшаяся под воздействием двух логических нулей на соответствующих линиях и одновременно, является выбранной. Этому соответствует подача логического нуля на линию триггера ячейки памяти, рассмотренной выше.



В режиме считывания содержимое ячейки памяти выдается на усилитель считывания и с него на выход микросхемы DO. При этом сигнал записи должен иметь пассивный единичный уровень. Режим записи устанавливается подачей активного нулевого уровня сигнала на вход записи . Открывается усилитель записи, и бит информации с входа данных DI поступает в выбранную ячейку памяти для запоминания, при этом усилитель считывания закрывается и данные на выход DO схемы не поступают.

Указанные процессы происходят, если на входе выбора микросхемы действует активный уровень логического нуля. При уровне логической единицы на этом входе на всех выходах дешифратора строк устанавливается уровень логической единицы, и ЗУ оказывается в режиме хранения. Последовательность подачи управляющих сигналов индивидуальна для каждого типа микросхемы памяти. Между тем имеются общие закономерности. Рассмотрим последовательность подачи сигналов управления в режимах чтения и записи (рисунок 19.3).

Первым как в режиме записи, так и в режиме считывания на шину адреса должен выставляться адрес активизируемой ячейки памяти. Снимается адрес с шины после того, как запись в ячейку или чтение из ячейки завершено.


Рисунок 19.3 – Временные диаграммы работы ОЗУ статического типа

Один из управляющих сигналов записи, или выбора микросхемы, или оба должны устанавливаться в активное состояние после установки адреса (интервалы времени, и , ) и сниматься до снятия адреса (интервалы времени , и , ). Тем самым обеспечивается высокоимпедансное состояние выводов DO и DI микросхемы, что исключает возможность ложного обмена информацией между микросхемами памяти и устройствами при смене адресов. В случае пассивного уровня сигнала отключается соответствующий буферный усилитель считывания или записи в каждом из своих режимах. В случае же пассивного уровня сигнала вырабатывается единичный уровень сигнала на линии ячейки памяти, благодаря чему она отключается от линий P0 ) и P1 хранит записанную информацию.

На рисунке 19.3 приведены временные диаграммы работы ОЗУ в случае смены режима, т.е. режим считывания осуществляется после режима записи, а режим записи – после режима считывания. Поэтому происходит установка обоих сигналов и .

Обычно при нескольких режимах чтения подряд и при отсутствии обращения к микросхеме памяти сигнал имеет постоянное значение логической единицы. В этом случае активизация входа DO осуществляется только нулевым уровнем сигнала на входе . Первым определяется режим работы памяти, т.е. подается сигнал . Управление выводами DI и DO осуществляется сигналом , который подается внутри временного интервала действия сигнала .

Считывание информации из микросхемы памяти возможно только в интервал времени , когда завершился процесс формирования данных на выходе DO (интервал времени ), и пока не снят сигнал выбора микросхемы. При этом время выборки характеризуется временным интервалом с момента выставления сигнала и до момента формирования информации на выходе DO.

В режиме записи сигнал должен выставляться только тогда, когда записываемые данные готовы и поступили на вход DI (временной интервал ). Аналогично сами данные для записи должны быть подготовлены к моменту, когда выработается активный уровень сигнала (временной интервал ), и удержаны до окончания действия этого сигнала.

Микросхемы ОЗУ допускают наращивание емкости памяти как путем наращивания числа хранимых слов, так и путем наращивания разрядности этих слов. На практике часто используется комбинированная структура, объединяющая наращивание, как разрядности, так и количества хранимых слов. В этом случае формируется некоторое количество однотипных групп микросхем, объединенных в структуру с наращиванием разрядности слов. Далее эти группы объединяются в единую структуру с наращиванием количества хранимых слов.

Динамическое оперативное запоминающее устройство.

Как уже отмечалось, информация в ячейке динамического ОЗУ представлена в виде наличия или отсутствия заряда на конденсаторе. Схема ячейки памяти динамического ЗУ на одном МОП – транзисторе с индуцируемым -каналом представлена на рисунок 19.4 (выделена пунктирной линией).

Рисунке 19.4 – Принципиальная схема ячейки ОЗУ динамического типа с элементами записи и усилителя считывания

На схеме также показаны общие элементы для – ячеек одного столбца. Главное достоинство этой схемы – малая занимаемая площадь. Накопительный конденсатор имеет МДП-структуру и изготовляется в едином технологическом цикле. Величина его емкости составляет сотые доли пФ. Конденсатор хранит информационный заряд. Транзистор выполняет роль переключателя, передающего заряд конденсатора в разрядную шину данных ШД при считывании либо заряжающего конденсатор при записи. В режиме хранения на адресной линии должен присутствовать потенциал логической единицы, под действием которого транзистор будет закрыт и конденсатор отключен от шины данных ШД. Включение конденсатора в шину данных осуществляется логическим нулем на линии . При этом на транзистор подается напряжение что приводит к его открыванию.

Поскольку шина данных ШД объединяет все ячейки памяти данного столбца, то она характеризуется большой длиной и ее собственная емкость имеет существенное значение. Поэтому при открывании транзистора потенциал шины данных изменяется незначительно. Чтобы установившийся потенциал на ШД однозначно идентифицировать с уровнем напряжения логического нуля или логической единицы, используется усилитель на базе транзистора и резистора . Непосредственно перед считыванием емкость шины данных подзаряжают подключением ее к источнику питания через транзистор . Делается это для фиксации потенциала шины данных. При считывании информации происходит перераспределение заряда конденсатора и заряда шины данных, в результате чего информация, хранимая на конденсаторе , разрушается. Поэтому в цикле считывания необходимо произвести восстановление (регенерацию) заряда конденсатора. Для этих целей, а также для записи в ячейку памяти новых значений, используются транзисторы и , которые подключают шину данных либо к источнику питания, либо к нулевому общему потенциалу. Для записи в ячейку памяти логической единицы необходимо открыть транзистор нулевым значением управляющего сигнала и подключить к шине данных источник питания. Для записи логического нуля необходимо нулевым потенциалом на входе открыть транзистор . Одновременная подача логических нулей на входы и не допускается, так как это вызовет короткое замыкание источника питания на общий провод заземления.

На рисунке 19.5 показан пример структуры микросхемы динамического ОЗУ емкостью 64 Кбит. Данные в этой микросхеме памяти представлены как 64 К отдельных бит, т.е. формат памяти 64 . Ввод и вывод осуществляется раздельно, для чего предусмотрена пара выводов и . Для ввода адреса имеется восемь контактов . Адресация к 64 К ячейкам памяти осуществляется шестнадцатиразрядными адресами . Причем сначала на входы подаются восемь младших разрядов адреса, а затем – восемь старших разрядов . Восемь младших разрядов адреса фиксируются в регистре адреса строки подачей сигнала (сигнал выборки строки). Восемь старших разрядов адреса фиксируются в регистре адреса столбца подачей сигнала (сигнал выборки столбца). Такой режим передачи кода адреса называется мультиплексированным по времени.

Рисунок 19.5 – Структура микросхемы ОЗУ динамического типа

Мультиплексирование позволяет сократить количество выводов микросхемы. Ячейки памяти расположены в виде матрицы из 128 строк и 512 столбцов.

На рисунке 19.6 представлены временные диаграммы, поясняющие работу динамического ОЗУ. В режиме считывания на адресные входы микросхемы подаются восемь младших разрядов , при этом производится выбор строки матрицы в соответствии с поступившим адресом. У всех ячеек памяти выбранной строки регенерируется заряд конденсаторов. Далее производится подача на адресные входы микросхемы восьми старших разрядов адреса, после чего вырабатывается сигнал . Этим сигналом выбирается нужная ячейка памяти из выбранной строки и считанный бит информации поступает на выход микросхемы . В режиме считывания промежуток времени между подачей сигнала и появлением данных на выходе называется временем выборки .

Рисунок 19.6 – Временные диаграммы работы ОЗУ динамического типа

В режиме записи за время цикла записи принимается интервал времени между появлением сигнала и окончанием сигнала . В момент появления сигнала записываемые данные уже должны поступать на вход . Сигнал обычно вырабатывается раньше сигнала .

Для каждого типа микросхем динамических ОЗУ в справочниках приводятся временные параметры, регламентирующие длительность управляющих сигналов, подаваемых на микросхему, а также порядок их взаимного следования.

Заряд конденсатора динамического ОЗУ со временем уменьшается вследствие утечки, поэтому для сохранения содержимого памяти процесс регенерации каждой ячейки памяти должен производится через определенное время. Следовательно, для предотвращения разряда запоминающих конденсаторов необходимо обращаться к каждой строке матрицы через определенное время. При обычном режиме работы ОЗУ это условие не соблюдается, так как обращение к одним ячейкам происходит часто, а к другим очень редко. Поэтому необходим специальный блок, ответственный за регенерацию памяти.

Для правильной работы динамического ОЗУ требуется довольно сложная схема управления. Вследствие того, что обращение к ОЗУ со стороны устройств, с которыми оно работает, и обращение со стороны схемы регенерации не зависит один от другого, следовательно, могут возникать одновременно, то необходимая схема, обеспечивающая упорядоченность этих обращений. Для этих целей существует схемы, управляющие работой динамических ОЗУ, реализованные на одном кристалле. Их использование позволяет значительно упростить построение памяти на динамических ОЗУ.

Постоянное запоминающее устройство предназначено для долговременного хранения информации, не разрушаемой при отключении питания. Принцип работы ПЗУ поясняет схема, изображенная на рисунке 19.7.

Таким образом, информация, хранимая в ПЗУ, определяется расположением диодов в пересечениях горизонтальных и вертикальных линий. При этом необходимое расположение диодов можно организовать двумя путями. В первом случае запись необходимой информации выполняется в ходе технологического процесса изготовления ПЗУ с использованием маскирующих фотошаблонов, причем запись информации производится в соответствии с технической документацией на данное ПЗУ. Такие ПЗУ называются масочными. Примерами таких ПЗУ являются ПЗУ с записанными программами работы станков с числовым управлением, преобразователи кодов и ряд других случаев, когда одна и та же информация используется в процессе работы множества однотипных устройств.

Рисунок 19.7 – Структура схема масочного ПЗУ

Во втором случае запись в ПЗУ осуществляет сам пользователь. Такие ПЗУ называются прожигаемыми ПЗУ. Запись информации в них производится с помощью специальных устройств, называемых программаторами. В процессе изготовления прожигаемых ПЗУ диоды устанавливаются во всех без исключения точках пересечения вертикальных и горизонтальных линий. Последовательно с каждым диодом включены плавкие перемычки, изготавливаемые из материала с относительно большим удельным сопротивлением, обычно из поликристаллического кремния или нихрома.

Если через горизонтальную и вертикальную линии пропустить импульс тока порядка 20 мА и длительностью 1 мс, то плавкая перемычка выгорает и соответствующий диод оказывается отключенным. Очевидно, что однажды записанная таким образом информация не может быть изменена. В реальных микросхемах ПЗУ вместо диодов обычно используются биполярные или полевые транзисторы.

Отдельным классом ПЗУ выделяют перепрограммируемые ПЗУ (ППЗУ), которые допускают стирание записанной информации и запись новой. Схема ППЗУ почти полностью совпадает с ранее рассмотренной схемой ПЗУ с той разницей, что в точках пересечения горизонтальных и вертикальных линий вместо диодов включены специальные МДП – транзисторы с так называемым изолированным затвором.

В обычном состоянии участок исток-сток транзистора электрический ток не проводит. Однако если приложить между истоком и стоком большое напряжение (приблизительно 80 В), то затвор зарядится в результате инжекции электронов. Такой процесс называется зарядкой через влияние. В дальнейшем заряд затвора будет сохраняться достаточно долго. Благодаря весьма высокому качеству диэлектрика из двуокиси кремния при температуре заряд уменьшается на 70% первоначального значения примерно за 10 лет. Отрицательный заряд на затворе притягивает дырки, создает в « -области проводящий -канал между истоком и стоком, т.е. транзистор оказывается в проводящем состоянии.

Стирание информации производится путем подачи специальных электрических сигналов в течение определенного времени. В качестве соединительного транзистора в электрически стираемых ППЗУ используется МНОП-транзистор. Он имеет следующую структуру: металл – нитрид кремния – оксид – полупроводник. Между затвором и полупроводником находятся два разных слоя диэлектрика. Использование таких ППЗУ позволяет осуществлять процесс программирования, не извлекая микросхему из устройства, в котором она эксплуатируется.

Контрольные вопросы

1 Провидите сравнительный анализ БИС ОЗУ статического и динамического типов.

2 Поясните принцип функционирования ячейки ОЗУ статического типа.

3 Какие функции в микросхеме памяти выполняют дешифраторы строк и столбцов?

4 Какая общая последовательность подачи управляющих сигналов на микросхемы ОЗУ статического типа в режиме считывания и записи?

5 Какие способы увеличения объема хранимой информации при организации модулей оперативной памяти вам известны?

6 Поясните принципы функционирования микросхем ОЗУ динамического типа.

7 Как организуется хранение информации в микросхемах ПЗУ?

8 Как реализуется возможность записи информации в прожигаемые ПЗУ?

9 Каким образом реализуются стирание и запись информации в ППЗУ?

Компьютеры используют оперативную память (ОЗУ) для хранения и извлечения информации таким образом, чтобы она была легко и мгновенно доступна. В компьютерах используется два типа оперативной памяти: динамическое ОЗУ (DRAM) и статическая оперативная память (ОЗУ). Каждая из них имеет свои собственные преимущества и недостатки. У SRAM есть преимущество скорости, а DRAM намного дешевле. Большинство компьютеров используют оба типа, но DRAM гораздо более распространена и выполняет большую часть работы.
Чип динамической оперативной памяти содержит миллионы ячеек памяти, каждая состоит из транзистора и конденсатора. Каждая из этих ячеек может содержать 1 бит информации, которая считывается компьютером как 1 или 0. Для определения показаний бита транзистор проверяет наличие заряда в конденсаторе. Если заряд присутствует, то чтение 1; если нет, то чтение 0. Ячейки расположены в квадратной конфигурации, причём строки и столбцы нумеруются в тысячах.

Проблема с динамическим ОЗУ заключается в том, что конденсатор очень быстро теряет энергию и может удерживать заряд всего лишь на долю секунды. Для поддержания заряда в конденсаторе и сохранения информации необходима схема обновления. Этот процесс обновления происходит сотни раз в секунду и требует, чтобы все ячейки были доступны, даже если информация не нужна. Когда считывается каждая строка ячеек, центральный процессор компьютера (ЦП) перезаписывает каждый бит информации, подзаряжая конденсаторы по мере необходимости.

С другой стороны, чипы статической памяти ОЗУ используют другую технологию. Ячейки памяти выполняют резкий поворот между 0 и 1 без использования конденсаторов, что означает, что процесс обновления не требуется, и доступ происходит только тогда, когда требуется информация. Без необходимости постоянного доступа ко всей информации, SRAM намного быстрее, чем DRAM. Вообще говоря, эти чипы намного более энергоэффективны, но это связано только с их ограниченной потребностью в доступе к памяти, а уровень потребления растёт с большим их использованием.

Самым большим недостатком SRAM является пространство. Каждый транзистор в динамическом чипе RAM может хранить один бит информации, и для хранения бита с использованием SRAM требуется от четырех до шести транзисторов. Это означает, что динамический чип RAM будет содержать как минимум в четыре раза больше памяти, чем статический чип RAM того же размера, что делает SRAM намного дороже. DRAM чаще используется для памяти персонального компьютера, а чипы SRAM предпочтительнее, когда проблема энергоэффективности является проблемой, например, в автомобилях, бытовой технике и карманных электронных устройствах.

3.9. Оперативные запоминающие устройства

Запоминающие устройства по выполняемым функциям делятся на оперативные и постоянные . Оперативные запоминающие устройства (ОЗУ ) осуществляют запись, хранение и считывание информации и работают только при включенном питании, т. е. ОЗУ являются энергозависимыми . Постоянные запоминающие устройства (ПЗУ ) хранят информацию при отключении питания, т. е. ПЗУ являются энергонезависимыми .

ОЗУ по виду хранения информации разделяются на статические и динамические . В статическом ОЗУ в качестве элемента памяти используется триггер , в динамическом - конденсатор . По-английски ОЗУ называется RAM (random access memory - память с произвольным доступом). Статическое ОЗУ соответственно SRAM , динамическое DRAM .

Статическое ОЗУ

На рисунке 1 показана структура статического запоминающего устройства.

Рис.1. Структура статического ОЗУ

ЭП - это элемент памяти. Еще его называют запоминающим элементом (ЗЭ ). Все элементы памяти заключены в матрице накопителя. Число элементов равно 2 n . Каждый конкретный ЭП хранит один бит информации и имеет свой, задаваемый n- разрядным двоичным кодом.

Адрес разбивают на две части (обычно одинаковые) - адрес строки и адрес столбца. Получается прямоугольная матрица, содержащая 2 k строк и 2 m столбцов. Всего элементов памяти будет 2 k+m .

Поскольку число строк и число столбцов значительно больше, чем разрядность двоичного числа, между адресными входами и матрицей элементов памяти ставят дешифраторы, на рисунке обозначенные как дешифратор строк и дешифратор столбцов.

Рассмотрим один из вариантов исполнения элемента памяти статического ОЗУ. Вот схема:

Рис. 2. Элемент памяти статического ОЗУ

Собственно элементом памяти является D-триггер , находящийся на пересечении i -йстроки и j -го столбца. Для уменьшения количества выводов микросхем ОЗУ совмещают их входы и выходы. Поэтому на схеме введен и электронный ключ SW .

При уровнях лог. 1 на линиях i и j и при подаче сигнала разрешения записи WR=1 (от write - записывать), в триггер записывается информация, которая поступает на вход D . При этом шина Вход/Выход оказывается подключенной к D входу триггера через электронный ключ SW и выполняет функции входа, при снятии сигнала WR ключ подключает к шине Вход/Выход выход триггера, и эта шина выполняет функции выхода.

Если ОЗУ одноразрядное, то шина Вход/Выход будет общей для всех элементов памяти. Но чаще ОЗУ многоразрядные и в этом случае на каждой паре линий строка-столбец располагается по n триггеров и n ключей, где n -число разрядов, а элемент "И" при этом остается один. И каждый из ключей подключается к своей шине Вход/Выход .

Помимо режимов записи и считывания, которые определяются потенциалом на входе WR , существует режим хранения данных , в котором запись и считывание запрещены. Режим имеет двойной смысл.

Во-первых, если в устройстве много микросхем ОЗУ, что характерно, то запись или считывание ведется по одной микросхеме, остальные в этом случае должны быть отключены.

Во-вторых, в режиме хранения данных энергопотребление намного меньше, чем в режиме записи и считывания (рабочий режим ). Для перевода ОЗУ в режим хранения используется сигнал CS, по-английски crystal selection - выбор кристалла. Обычно для перевода в режим хранения на вход CS подается уровень лог. 1 , для перевода в рабочий режим - лог. 0 .

Динамическое ОЗУ

Как говорилось ранее, в динамическом ОЗУ функции элемента памяти выполняет конденсатор . Информация представлена электрическим зарядом, к примеру, если есть заряд на конденсаторе, значит в элемент памяти записана лог. 1 , нет заряда - лог. 0 .

Поскольку время сохранения заряда на конденсаторе ограничено (вследствие утечки), необходимо периодически восстанавливать записанную информацию. Этот процесс зовется регенерацией . Помимо этого, для динамического ОЗУ требуется синхронизация, обеспечивающая последовательность включений функциональных узлов.

Для реализации элемента памяти динамического ОЗУ широко применяется схема, показанная на рисунке 3 .

Рис. 3 - Элемент памяти динамического ОЗУ

Выбор элемента памяти производится сигналом лог. 1 на шине строки. Транзистор VT2 открывается и соединяет конденсатор С1 с шиной столбца. РШ - разрядная шина . Предварительно через транзистор VT1 , который открывается сигналом "Такт (С)" , заряжается емкость С ш до напряжения U 0 . Емкость С ш должна значительно превышать емкость С1 .

Элемент памяти динамического ОЗУ проще, чем статического, поСо, этому объем памяти в динамических ОЗУ выше, чем в статических. При большой разрядности адреса его делят на две части. Первая называется RAS , что по-английски означает row access signal - сигнал выборки строки, вторая - CAS , на английском означающая column access signal - сигнал выборки столбца.

Сигналы RAS и CAS сдвинуты друг относительно друга во времени, сигнал разрешения записи WR должен появляться при введении обеих частей адреса. Одновременно с WR вводится информационный сигнал. В режиме считывания информационный сигнал появляется на выходе с некоторой задержкой, относительно сигнала CAS .

Обозначение сигналов микросхем памяти (для сведения)

1. Адрес: А

2. Тактовый сигнал: С

3. Строб адреса столбца: CAS

4. Строб адреса строки: RAS

5. Выбор микросхемы: CS

6. Разрешение: CE

7. Запись: WR

8. Считывание: RD

9. Запись-считывание: W/R

10.Разрешение записи: WE

11.Разрешение по выходу: OE

12.Данные (информация): D

13.Входные данные: DI

14.Выходные данные: DO

15.Адрес, данные; вход, выход: ADIO

16.Данные вход, выход: DIO

17.Регенерация: REF

18.Программирование: PR

19.Стирание: ER

22.Общий вывод: OV

просмотров